(3x^2-50)=(2x^2-5x)

Simple and best practice solution for (3x^2-50)=(2x^2-5x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x^2-50)=(2x^2-5x) equation:



(3x^2-50)=(2x^2-5x)
We move all terms to the left:
(3x^2-50)-((2x^2-5x))=0
We get rid of parentheses
3x^2-((2x^2-5x))-50=0
We calculate terms in parentheses: -((2x^2-5x)), so:
(2x^2-5x)
We get rid of parentheses
2x^2-5x
Back to the equation:
-(2x^2-5x)
We get rid of parentheses
3x^2-2x^2+5x-50=0
We add all the numbers together, and all the variables
x^2+5x-50=0
a = 1; b = 5; c = -50;
Δ = b2-4ac
Δ = 52-4·1·(-50)
Δ = 225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{225}=15$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-15}{2*1}=\frac{-20}{2} =-10 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+15}{2*1}=\frac{10}{2} =5 $

See similar equations:

| 8-q=18 | | -1-3w=2w-7 | | x+(x+1)+(x+2)+(x+3)+(x+4)=140 | | 11-19y=-20y | | 6(-4+p)=36 | | 8−q=18 | | -16v-9-5v=-20-20v | | 1+10*x=141 | | 5p+10=-60 | | 8s=9s-4 | | -8k-5+3k=-6k-10 | | -y+2=-2y-8 | | 7(n-5)=-133 | | Y=75x+16 | | a+5=5+4 | | (3x-6)+(2x)=66 | | (3x-6)+(2x)=46 | | (3x-6)+(2x)=48 | | 5u+14=21 | | −6(x−3)=5(4−x) | | (3x-6)+(2x)=24 | | 9f=10f-4 | | 10z(z^2+25z-5)=0 | | 2x(x+6)/7=3x-1 | | 5u+-14=21 | | -9h-7=-10h+4-5 | | x-2,500=1760 | | x2-16x+-8=0 | | -2b-6=-3b+2 | | -7(3y+3)=-8•(2y+5)+148 | | 22x+36=20x+48 | | -4+m=-m+10 |

Equations solver categories